A graphene layer consists of carbon atoms linked by covalent bonds, forming a honeycomb structure. Its excellent electron mobility, chemical and physical stability, electrical and thermal conductivity ...
A field effect transistor (FET) is a carrier device with three terminals: source, drain, and gate. In FETs, an electric field can be applied at the terminal of the gate, modifying the conductive ...
A research team has developed an n-channel diamond MOSFET (metal-oxide-semiconductor field-effect transistor). The developed n-channel diamond MOSFET provides a key step toward CMOS (complementary ...
Carbon Nanotube Field-Effect Transistors (CNTFETs) represent a pivotal advancement in nanoelectronics, employing the extraordinary electrical properties of carbon nanotubes to achieve superior ...
A technical paper titled “Progress in Gallium Oxide Field-Effect Transistors for High-Power and RF Applications” was published by researchers at George Mason University and National Institute of ...
With the right mix of materials, TFETs promise cooler, smaller, and more efficient circuits for everything from the Internet of Things to brain-inspired computers. But before they can leave the lab, ...
Metal-oxide-semiconductor field-effect transistors (MOSFETs) have revolutionized the world of electronics due to their remarkable performance and widespread applications. The MOSFET transistor is a ...
A semiconductor amplifying device with up to 100-meg input impedance is now available from an American manufacturer. (Some French firms already have announced field-effect devices.) Crystalonics, ...
Hosted on MSN
What Is a Transistor, and How Does It Work?
Transistors are tiny electronic components that act as switches and amplifiers, and they dwell at the heart of modern technology. In simple terms, a transistor can turn a flow of electricity on or off ...
Some results have been hidden because they may be inaccessible to you
Show inaccessible results